Noetherian rings without finite normalization
نویسندگان
چکیده
A number of examples and constructions of local Noetherian domains without finite normalization have been exhibited over the last seventy-five years. We discuss some of these examples, as well as the theory behind them.
منابع مشابه
On co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملNoetherian Rings—Dimension and Chain Conditions
In this paper we look at the properties of modules and prime ideals in finite dimensional noetherian rings. This paper is divided into four sections. The first section deals with noetherian one-dimensional rings. Section Two deals with what we define a “zero minimum rings” and explores necessary and sufficient conditions for the property to hold. In Section Three, we come to the minimal prime i...
متن کامل1-torsion of Finite Modules over Semiperfect Rings
We initiate the study of 1-torsion of finite modules over two-sided noetherian semiperfect rings. In particular, we give a criterion for determining when the 1-torsion submodule contains minimal generators of the module. We also provide an explicit construction for a projective cover of the submodule generated by the torsion elements in the top of the module. Some of the obtained results hold w...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملGrowth of Graded Noetherian Rings
We show that every graded locally finite right noetherian algebra has sub-exponential growth. As a consequence, every noetherian algebra with exponential growth has no finite dimensional filtration which leads to a right (or left) noetherian associated graded algebra. We also prove that every connected graded right noetherian algebra with finite global dimension has finite GK-dimension. Using t...
متن کامل